ANOTHER SHARP L2 INEQUALITY OF OSTROWSKI TYPE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Inequality of Ostrowski-grüss Type

The main purpose of this paper is to use a Grüss type inequality for RiemannStieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose first derivative are functions of Lipschitizian type and precisely characterize the functions for which equality holds.

متن کامل

Some Sharp Ostrowski-grüss Type Inequalities

Using a variant of Grüss inequality, to give a new proof of a well known result on Ostrowski-Grüss type inequalities and sharpness of this inequality is obtained. Moreover, a new general sharp Ostrowski-Grüss type inequality is given.

متن کامل

Extremal functions for the sharp L2− Nash inequality

This paper is in the spirit of several works on best constants problems in Sobolev type inequalities. A general reference on this subject is the recent book of Hebey [9]. These questions have many interests. At first, they are at the origin of the resolution of famous geometrical problems as Yamabe problem. More generally, they show how geometry and analysis interact on Riemannian manifolds and...

متن کامل

A New Generalization of Ostrowski Type Inequality on Time Scales

(b− a)‖f ‖∞. (1) The inequality is sharp in the sense that the constant 14 cannot be replaced by a smaller one. For some extensions, generalizations and similar results, see [6, 9, 10, 11, 13, 14] and references therein. The development of the theory of time scales was initiated by Hilger [7] in 1988 as a theory capable to contain both difference and differential calculus in a consistent way. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The ANZIAM Journal

سال: 2008

ISSN: 1446-1811,1446-8735

DOI: 10.1017/s1446181108000308